
other projects, we plan to develop
parallel preconditioner modules
based on banded and sparse Jacobian
matrix approximations, including
automatic generation of required
matrix data. These modules will
address large classes of problems
characterized by broad structural fea-
tures. These parallel solvers and pre-
conditioner modules, combined with
automatic generation of the required
Jacobian data, will constitute a pow-
erful tool for a wide variety of simu-
lations.

Building on other widely used
LLNL software, we plan to develop
analogous parallel versions of two
other solvers—one for nonlinear
equation systems and one for differ-
ential-algebraic systems. Our modu-
lar design permits this expanded set
of solvers to share PVODE’s linear
solver modules and vector kernels.
In contrast to other approaches, the
great power of our underlying meth-
ods is retained in the parallel ver-
sions.

ODE Solver Developed
Our first implementation of

PVODE was written for the Cray-
T3D machine (256 processors) with
its shared memory (SHMEM) pro-
gramming model. By design, in the
user interface to PVODE, the passing

UCRL-TB-125577 URL: http://www.llnl.gov/CASC/PVODE

Technology
PVODE is a portable solver for
ordinary differential equation
systems, based on robust math-
ematical algorithms, and tar-
geted at large systems on
parallel machines. Closely
related software will also be
developed for systems of non-
linear algebraic equations and
for systems of differential–alge-
braic equations.

Applications
We are working with application
efforts to use these parallel
solvers, beginning with the
tokamak edge-plasma model
UEDGE.

Agreat many modeling situa-
tions lead to systems of ordi-
nary differential equations,

systems of nonlinear algebraic equa-
tions, or systems of differential–alge-
braic equations. As application
codes require higher resolution
and/or greater speed, they must
move to parallel processors, where
they will need parallel versions of
such solvers.

The size and complexity of these
problems pose major challenges.
Time-dependent problems generally
require implicit integration methods,
which require the solution of nonlin-
ear algebraic systems. In all cases, the
nonlinear system is treated by a
Newton iteration, which requires the
solution of linear systems, which are
typically large and sparse. For such
systems, iterative (Krylov subspace)
methods are an attractive choice, but
to be robust, these require precondi-
tioning.

General-purpose (sequential) soft-
ware packages developed at LLNL
for these three problem classes are
among the most widely used solvers
anywhere for these problems. Of
central interest here is a C-language
solver called CVODE (Scott D. Cohen
and Alan C. Hindmarsh, “CVODE, a
Stiff/Nonstiff ODE Solver in C,”
Computers in Physics, 10 (2), March/
April 1996). Its highly modular
structure was designed with parallel
extensions in mind.

Modular Approach
In this effort, we are building a

code system for parallel machines
that will include three solvers. We
adopt the Single Program, Multiple
Data programming model, with mes-
sage-passing communication.

A parallel solver for ordinary dif-
ferential equation systems, called
PVODE, builds upon CVODE by
way of parallelization of the module
of vector kernels. PVODE contains
two of the original four method
options, namely the nonstiff method
and the stiff method with iterative
solution of the linear systems. (A
parallel band solver will be added
later.)

A critical feature in most applica-
tions is the preconditioning of the
linear systems. Leveraging from

PVODE, a
Parallel Solver
for Ordinary
Differential
Equations

The integrator PVODE, as well as related solvers for nonlinear systems and differential–algebraic
systems, use a modular and extensible design.

Lawrence Livermore
National Laboratory

University of California

Work performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-ENG-48

PVODE, a Parallel Solver for Ordinary Differential Equations

of data specific to the machine envi-
ronment is isolated and minimized,
while user calls for machine-indepen-
dent functions are unchanged from
the sequential version. This version
also supports a usage mode where
PVODE is run on a proper subset of
the user’s T3D partition.

We have also developed a version
of PVODE based on the Message
Passing Interface (MPI) system. As
before, we needed to rewrite only the
vector module in CVODE. We first
implemented this version on the IBM-
SP2 at Argonne (128 processors) and
then moved it to LLNL’s Cray-T3D
after MPI was installed on that
machine.

Testing of both versions has
demonstrated proof of the basic
design principle, whereby extensions
can be isolated to the module of vec-
tor kernels. The re-entrant design
allows two or more instances of
PVODE to be run in parallel. The
widespread availability of MPI makes
this version of PVODE highly
portable. Further, we have found the
MPI system to be much easier to work
with than the Cray-T3D SHMEM sys-
tem, because MPI operates at a higher
linguistic level.

The modular design of PVODE
includes the linear system solvers as
separate general-purpose modules.
In fact, the parallel version of the pre-

conditioned Krylov algorithm has
been used as the linear system
solver in a nonlinear steady-state
plasma fluid simulation.

The analogous solver for nonlin-
ear algebraic systems is currently
being written.

Scalable Performance and
User Tools

For each version of PVODE, we
ran tests of the vector module alone
and then tested the integrator using
a series of simple ODE problems.
The MPI version of PVODE was
tested with both the original
Chameleon (MPICH) implementa-
tion of MPI and the later Edinburgh
(EPCC) implementation.

We ran comparison tests on the
Cray-T3D with three versions of
PVODE on a test problem with sizes
up to 1.28 million dependent vari-
ables. The test problem is a pair of
two-dimensional kinetics advec-
tion–diffusion equations, dis-
cretized in space. The plot above
shows scaled total cost (cost per
function evaluation) as a function of
the number of processors, with a
fixed subgrid size on each proces-
sor. We found that the EPCC ver-
sion of MPI was quite competitive
with the Cray SHMEM version and
scaled well with problem size, while
the MPICH version did not.

An important part of this project
is the development of example pro-
grams, or user templates, for the
solvers. As a byproduct of the test-
ing, several such example programs
have been written for PVODE. Sepa-
rately, we wrote a set of interface
routines between CVODE and FOR-
TRAN to enable users with FOR-
TRAN problem-defining code
modules to use CVODE and, even-
tually, PVODE.

Planned Applications
We are working on applications

of this software to two-dimensional
tokamak edge-plasma models devel-
oped in LLNL’s Magnetic Fusion
Energy Division. The MFE commu-
nity’s primary tokamak edge model,
UEDGE, now uses three of our
solvers on sequential machines, and
a parallel version of it is planned.
Software from this project will
enable that code to use problem
sizes sufficient to resolve boundary
features and impurity effects that
are not adequately resolved now.
We expect to see numerous other
applications of our parallel solvers
in a variety of simulations.

For more information about the
PVODE project, contact Alan Hind-
marsh, 510-422-4276, alanh@llnl.gov.

Tests of PVODE on the Cray-T3D, with problem sizes up to 1.28 million dependent variables, show competitive and scalable performance with one
implementation of the MPI (Message Passing Interface) library.

